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ABSTRACT

In this paper, the authors consider the problem of change points within

the framework of model selection procedures using information theoretic criteria.

The authors proposed procedures for estimation of the locations of change points

and the number of change points. The strong consistency of these proceudres

is also established. Also, the problem of change points is discussed within

the framework of the simultaneous test procedures.

Keywords and phrases: Change points, Consistency, Edge detection, Information

theoretic criterion, Model selection, Quality control.

\\~ .. ...V .. ...

* V



1. INTRODUCTION

Problems of detection of change points arise in many areas. For example,

in continuous production process, it is of interest to find out the point at

which deterioration in the quality of the product starts. Change point problems

arise (see Mazumdar, Sinha and Li (1985)) in the area of edge detection. For

discussions on some other applications, the reader is referred to Page (1957)

and Holbert and Broemling (1977).

When the underlying distribution is normal, the change point problem is

equivalent to detection of change in mean and/or variance. Chernoff and Zacks

(1964), Page (1955), Hinkley (1970) and several other workers investigated the

problem of change point in the mean. Sen and Srivastava (1973) and Srivastava

and Worsley (1986) investigated the problem of detection of the change in the

mean vectors. In the above papers, change point problems were studied within

the framework of tests of hypotheses.

The object of this paper is to study change points in the mean vectors

within the framework of model selection procedures using information theoretic

criteria. In Section 2, we give some preliminaries which are needed in the

sequel. Section 3 is devoted to the problem of estimation of the locations of

change points when the number of change points is known. The strong consistency

of the procedure is also established. In Section 4, we assume that the number

of change points is unknown and propose procedures for the estimation of the

number and locations of change points. The strong consistency of these procedures

is also established. Finally, in Section 5, we discussed the change point

problem within the framework of simultaneous test procedures.

%
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2. PRELIMINARIES

Let x(t) be an independent p-dimensional process on [0,11 such that

x(t) - P(t) + v(t), 0 < t < 1 (2.1)

where p(t) is a non-random p-dimensional left-continuous step function and

v(t) is an independent p-variate normal process with mean vector 0 and

covariance matrix Z. Denote the jump points of p(t) by tI ..... tq;(0 < t

< ... < t < 1). Then tl,. ... tq are called the change points of the

process x(t). We assume that N samples are drawn from the process x(t) in

equal space, say x( ).... x(). Then, it is of interest to estimate the
1 N

location of (t1,....,t ) from observations . Here it is
qNN

emphasized that for different N, the series {x( ),... x( )} is different.

Sometimes, the number q of change points is unknown and in this case we have

to estimate q. In this paper, it is assumed a priori that q < L, a constant.

We. now define some concepts and introduce some notations which are useful in

the sequel. From the integer interval [0,N], we can pick t integers from

[1,N-1I to divide (0,N] into Z + I sections. Let k1 < ... < kZ (0<ki<N)

denote the t integers picked from (1,N-1]. Then, we call (ki ..... k t) a

partition of the interval (0,N], and k., I < i < Z, a cut off point of this

partition. Sometimes, we denote (k1,... kt) by n or 7 simply. A partition

(zI ...,zi) is called a refinement partition of (k11....,kt) if the set

{kl,k2 ..... kt} is a proper subset of {z1,...,zi}. This fact is written as

(z1 , ...,.i) (kI,..., ke). If we define -i 0 (zi .... z)' i (k ... ),

the above relation is written as iT
Define x (N) I < i < N. It is obvious that xN) is dependent on

"i - N - - -1

the sample number N. Throughout this paper, we will use x. instead of x
(N )

-i -1



but we must keep in mind that x.i is dependent on N.

If x is a vector, then x' denotes the transpose of x. Also, the

maximum and minimum eigenvalues of the matrix M are denoted by X mx(M) and

A mi(M) respectively. Throughout this paper, C1,C 2 C 3 etc. denote some

positive constants which can assume different values at each of their appearances,

and the Eculidean norm of M is denoted by JIM1. Now we shall prove some lemmas.

At first, we cite a lemma by Fuk and Nageav (1971).

Lemma 2.1. Let x1,.. .,x nbe independent random variables with Ex. 0,
n

aand E(xi(t < ~ 1,2,... ,n. For t> 2, write Sn = Xit B 2  Var(x.),
n~ n= 1

A t - j Ejx. t. Then for x > 0,

(1) -t(2) 2 2P(S> X) <Ct At x + exp{-Ct x /Bn

where

C().(1+ 2)t and C() 2(t+2)-2 et.
t t t

In the original paper, C 2= 2(t+2)- e- ; this isa printing error.

Lemma 2.2. Let x 1,."'!N be iid pxl normal vectors with mean vector 0 and

positive definite covariance matrix Z. Now, let

N

A N - i )( (2.2)
i N -i -N - O

where

K - ~ k(2.3)
!ij ij-i _

k. ki+1x

a' Then,

.e re Fo
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P{ A (AN) <CN-(L+2)P(max(AN) 2 max()< (2.4)

PA () 1 N( L+2)

min( N  "min. (2.5)

Proof. For the sake of simplicity, write N ' - Then

A XiX XX (2.6)

'- i= I

Let

x (x ... ,X 1 < i < N

Yjk xijxik I < j,k < p. (2.7)

It is easy to see that yjk is the average of N iid random variables. Its

fourth moment is finite. Let ExljXlk = "jk and put t = 4 in the Lemma 2.1.

Then for any E > 0,

NJ I (x ijxik- A jk)l 2 ) < CINL (2.8)

and

P( IIR. >_ 1E2) < C1N

But

1:, (Wjk):PXP and X.%. ( ' xijxik):p.P.
i-I i-l

It follows

PlAN - Ell > < C2N(L+
2 ) (2.9)

%,



5.

Let A1(A) > ... W A (A) dencte the eigenvalues of a pxp matrix A in the sequel.

Then a well-known inequality about symmetric matrix, we have

(xi(AN)'Xi(E)) 2 < tr(A N-Z) 2  (2.10)
i-i.

The relations of (2.4) and (2.5) follow immediately from (2.9) and (2.10).

Lemma 2.3. Let xl,...,XN be iid pxl normal vectors, (again take notice

of that xi, 1 < i < N, is dependent on N), X1 - N p(0,z), E > 0 and is unknown.

Write

N N -(i ON&(Xi -ON~j=1

(2.11)
N N

" l(x(i_ON - , _ON (xN I iN )( Xi_NiN7
i=1 - I  i=Nll

where
J

- 1
- ij j-i k

k=i+l

Then we have that AN-BN is non-negative definite, and for k,, k2, 0 < k, < k2 < N,

the following estimates hold.

2- k 2 kl2 lk) i--9- } < CIN-(L+2) (2.12)
Nmax(- - k k k -2C N 1 C

Pf (logIANI-logtBNI) > C logN} < C1 N(
1 L+2) (2.13)

Proof. Without loss of generality, we prove (2.12) for k, = 0, k 2 . N only.

Let y(N) .i '- 0N" Then y(N) Np(0,1 ). Write y(N) . (y'N) (N))'
- .. ,yp ,
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and y (N) y (N)'.( (N) ):xwhere y(N) .y(N) ( N). Since Y(N) -N01,for

all i, 1 < i < p it is not difficult to see that

pyNj> Clog N) < e_ 1 -C-og

1 V~~2ir Clog Ne<CNL.

for some constant C, and N > 3.

From the fact that 21yiy .I < 2i + 2 it follows irrnediately that

P( Ify (N ii (N C iogN}. <CI N_(L+
2)

So

PtIIN x'II > CLogN} <.C N_ (L+2)

which implies (2.12).

Here, we note that

AN -(

N i (i_ N - O

N +N(N-N) TN N~O NN

BN + N2 ON 1 1x 1 I1 ( N-

and for any vectors x and y

Sxx'- yy' <(x-y)(x-y)' < 2(xx +yy') (2.14)

we have
2NN N

0 N - B N N 2 ONI- N 1~ xN 1Nx I N
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4, From (2.12), we get

P{A(AN-B) N } < CIN-(L+2) (2.15)
maxNN >ClRN ) <

It is well-known that for any symmetric matrix D2 and D > 0,

_max (D2) < X(0 2 )  max (D2) (2.16)X max (D I)  ma- min (D) I
4-.

By Lemma 2.2, we have
Pk ( < X ()} < -CIN7(L+2) (.7

min ) min (2.17)

From (2.15) - (2.17), it follows that

P{6i C logN/N} < CIN (L+2)

where 6. Z A'k Bi(AN-BN)B).
1 N N NN

From
N _ _if(log(ANI-l1gINI) 19(+N(NB

- p

N N
= log( H (1+6 )) < 2 6.

(2.13) follows.

Remark 2.1. Let irt = (ki t... ,k) be a partition of (0,N], where f is less

than a certain constant L. Setk
"S. Z j+l

Ai(N) = L - - ) (2.18)'p. j i0 i=k j+1 j j+l i j+l

where k 0 0, k+ I =N. Then

3 -(L+2)
P{x (A_ (N))> 1 x(Z)} < C1N-

1 (2.19)

P{Amin(A (N)) -(Z)} < CIN_(L+2)

mnIt2 min() CN

4-

4,
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To see that (2.19) hold true, we observe that

AN A (N) - (k -k)(x )(x
N* N j+ -kk ON -k k -)ON

< 22+ 0(k~ -)x

j" =0O Xkk ~jj+ j l

N kk kk N j+1ji ON ON
j=0 jkj+ j j+ j 0

2 x + 2- -t

j- N k ikj+ -k k -~l ON-ON

From (2.12), we have

P{A (A -A (N)) logN C N-(L+2) (2.20)

max N 'If N 1

Write A i(AN-A (N)) = A. simply and write AN - A (N) = (a ):pxp

By means of inequalitites

Al > max a..

1 i i

*XX > max (a..a.. -a1 l2-- i<j!iP

we have for any e > 0,

PIIAN - A (N)fl E < C N-(L+2) (2.21)

Combining (2.9) and (2.20), we have

P{IIA (N) - Z. < C1  (L+2) (2.22)

Thus, we obtain k2.19).

Remark 2.2. Let x1 ..... XN be independent pxl normal vectors with common

covariance matrix E > 0. Assume that

Ex 1 Ex k = u I , Exkl+ . Ex k u2,

* Ex = .. E£x = Ex = ExN
-k +1 ' Ezk +1 -

N-
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k
and I j+1

B (N) 1 0 (x-: k. Ax k(TkIt R J=0 i=k.1+1 ~i -- J +1 ~i -ki j+l

Then for p= (kl,.. .,k), we have for E > 0

P{II B=(N)-EJlije} < C 1N-(L2 (2.23)

The proof is very easy if we notice that xl- I, ... Xk- k1+l- 2 .....

+1 are iid pxl normal vectors 
so that we can apply Remark 2.1.

Lemma 2.4. Let x I .... N be independent pxl normal vectors with the same

covariance matrix Z > 0, .and ri= (k ...,k ) be a partition of [0,N]. Assume

Exi = pit k j-<i<kj j p j+l (2.24)

where j 1,2,.. .X+i, and k ° 
= 0, k +I= N. Set

k +N
1j 2 

)(XANkPiNI (X -~ )( -X (.5
12 ANkjNI, N - i -k xki+Nx 2  -i -kNIk +N) (2.25)

N2 i=k -N +1I
i

k +N2

N i i -x kik ,k +N 2-xi xkjtkji+N 2) (2.26)

wher N << jl n Set ITZ = (kI, ... ,kj-N 19

1  2  j+1 - k

k+N kj+ I  k and +it (kit ... ,kj_l,kj-),k j ,k+N2 kj+l....k)

i1 (2.- k+ 2' +

Suppose that for some positive constant(

V % % %

il
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N1  ODN, N2 > IDN (2.27)

where DN satisfies the following conditions:

(i) lim DN/IOgN =  ,(2.28)
NN
N-oN

(ii) lim D N'N = 0. (2.29)
N- N

Then there exist constants C1 and C2 such that

DN CN- (L+2 )
P{kmax(AN(kjNIN 2)-BN(kjNlN 2 )) < C - } < 3 (2.30)

and

p{N (log[A l-logA +) < C2D < CN- (L+2) (2.31)

where A , A are defined by (2.18).
E+l '1+2

Proof. By calculation and the inequality (2.14), we have

A +l -A 7+2 = AN(kjNIN 2  B N B(kjNIN 2 )

iT+ 2 NNI+12) (XjN~kj -NkkN 2 )(Xj-lk k~ N)

NIN2 - - ,R NTN+ 2  ~k-N 1, k. -k.,k +N )(x -1) -jp jj+ 2

> 12 (-101vi (vi )I. j-vi 2(x -u)(X. vi.N(NI+N2 ) 2 -j+k-j)(-kj+I - k j- Nlk j--j

- 2(X kjk +N 2 - - j+ l ) ( x k ' k j +N2 - -u j + I )

-(J 1-J2 - J3). (2.32)

From Lemma 2.3, Eq:(2.29) and Xmax ( 1 ) > I tr(JI), we getSp '

PmaxJ 2+J3)_> logN -(L+2) (2.33)
P (i +j C N < C N. (.3

Bym 2 N
B ) > 1 N(I N-2 p) 2  > 2 )C D N / N , 2 .3 4 )

max() - 2p N(NI+N 2) = 2jVj - 2

1 2) ji5 I N
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where
p

2 S2
( 8- j=1 2j 1 = 8p Ij+1 - jI

Combine (2.33) and (2.34), the inequality (2.30) follows. By (2.19),

P{A a(A 3 (} C 1N-(L+
2) (2.35)) > Z+2 max 1

(A1 -) C -(L+2)
P{,kmin(Ar e+2) < ' min ( ') < IN

By (2.14), (2.33) and expression of A - A

P{max (A -A ) > 21 2j+l-j'2 < CIN-(L+2 ) (2.36)

Note that (A (A -A )) < a (A -A )/X . (A ), there
ZmaxiArZ+2 7Z+I 7t+2 Z+ 72 min 2

exists C4 > 0 such that

P{kmax(A- 1 (A -A )) > C4} < CIN-(L+2) (2.37)mxTZ 1T+I IT &2 -4 1

if A (A-I  (A -A ))< C4, there exists C5 > 0 such thatma C+2 e+I CZ+2

N (logA -logIA 1) N logi I +A0 (A -A )A- A )I

e+1 f+2 Z+2 Zf+i i+ 2 l+2

1N (A-I  (A -A )M)
- 2 max T e+ i t+&$2 + i Z+ 2

2 C5  a[A -A )/ax (A )+2) (2.38)- 2 
e+I T t+2

But

P logIA I-logjA 1) C2DN}

N max (A -A I+2

P Pmax [A I  (A -A 'ff )] > C4 + pN< 5N (.- C+2 r+1 Z+ - ,?a(A +) 2 C2N } (2.39)



- . -- - - - - - - - - - - - S 4 - A

4
.1

'S From (2.39), (2.37) (2.35) and (2.30), it follows that (2.31) is true.

Sb

4.

4

U

4.
4.

- ' ~ ~A -- ' .. ~A *~ A ~ A P A ~ 4.4. ~S, . 4.4. VA~*'I ~ VA~ 4. ~ ~ A,~*~~~%*%** 4.4.
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3. ESTIMATION OF CHANGE POINTS WHEN q IS KNOWN

Let 0 < tI < ... < t be the change points of the process x(t). We canq

find a partition n = (k N) .. ,k (N ) ) for each N, such that
0 1 q

if k(N) k(N)
Ex(-) if . , I < j < q+l, (3.1)

N j- -- i

where k(N)= 0, k (N) N, andu W p I < j < q+l.0 q+l -j -1- -

In order to simplify notation, we write x. for x(-L), n0 for iT N) and

j-
rN-I

k. for k N

For the integer interval [O,N], there exist ( N-) different integer
q

partitions denoted by K . Assume that i = (kI'...-k')eK , and h is a hypothesis- q q qi

such that
Ex *i ' < N.k k

Ex. -Iif k_ i < k., 1 < j < q+l, kh = 0, k + N.-. -J i-I -- q+1

The model M is the one for which h is true. Let 0 = {(,Z):TrEK ,Z > 0} be

a parametric space. We are interested in selecting one model based upon

observations x l,....xN. Under h , the logarithm of the likelihood function is

logL(e) - N 1 q+l

. .. .log z - tr(Z- A.(N)) (3.2)2 olI 2J=1  J

where k.

A.(N) = (xi-x ' 0)(x -x P' (3.3)
j N ' 1~ 1k k - -k k

i=kj+1 k " - k k

j = 1,2,... ,q+l, k' = 0, k' N, and 8 = (r,Z). Let
q4-

A (N) A (N). (3.4)
Tr j

It is not difficult to see that

Sup logm(8) logjA (N)I p (3.5)E& 2 Tr2

where LH, denotes the parametric space under h

TT TT
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and AI denote the determinant of the matrix of the matrix A. Now let

Nn logIA (N)I, (3.6)

where Tr E K . Then there exists a partition Tr = (k-i ... skq) 6 Kq such that

G- maxG (3.7)

k k
Using ( .. ) as an estimate of the true location of (t, ... t)

Un N " N an

we can prove the following theorem:

Theorem 3.1. Let x1,... ,x be a sample of size N drawn from the process
-N

k, k
x(t) in equal space, where x(t) is defined by (2.1) Then .-,...,-) is

a strongly consistent estimate of (t1, .... t q).

Proof. For each N, let 7o = (kl .... k q) be a partition so that (3.1) holds.

It is easy to see that

t <  1,2,...q (3.8)

Now, take constants DN which satisfy (2.28) and (2.29). Then the adjacent

intervals (k. - D, k + DN) and (k - DN , k + D ) are non-intersecting
y Nj N j+1 N j+1 N

-(N) .k ....k'): qfor large N and all j - 1,2,..., q. Define K = = I
qq

such that {k,..... ,k} n fkj-DN, k.+DN} = 0}. We shall prove that with prob-

ability one for large N,

G < G for all n'6 K(N).
q

Take a partition n' (ki .... k) K (N), we can cohstruct a new partition i1
q 

which has all cut-points of both i and n' except the point k.. Denote n7 by

(k" ... ,k"). Assume k drops into (k'.',k"). Let v = kk"]...,k",k,k'' .. ..
j i+. +1

From Lemma 3.4, with probability for large N we have

P{G2 - GI < C2DN} CIN-(L+) (3.9)

Sirxe I (k" ... ') is a refinement partition of n', it is easily proved that

-"-/- - -' '' • ". " - . . ' ... " . .' "- -,-p : '''' -' % ' ' ' ' k
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(A ,-A IT) is a non-negative definite matrix based on the expressions of A I

andA '. So
T

(3.10)
i l 1

At the same time, for n 'IO# we can sequentially construct n2 = (k ' . ''
2 2 1

k.,ki+ , ...,k") from (kI .. k )= T by means of adding one cut-point of -i' each

time. Let nq+1 denote a partition which has all cut-points of io and one

cut-point of n' different from k1 ,..... kq. Iq+2 a partition which has all

cut-points of nq+l and one cut-point of 7' different from all cut-points of

q+l'... . . . Thus we obtain

IT0 = I q -P q + l ) 0" q + 2 -  + 1i 0 '

By Lemma 2.3

P{G - G > C ]ogN} < C N(foLj 2 )Pq+j+l , for j = 0,1.... ,-q, a.s.

Hence r )-0 implies0

P(G> LClogN} < LCIN-QL+2) (3.11)

P 2 -G~o 

Combining (3.9) (3.11) and noticing

G, G O (G ,fG )+ (G -G )+ -G ),
11 I 0  11 2 2 ~0

we have for large N
C2? -(L+2)

P(GT- - DN} < (L+I)CIN (3.12)
0

Note that the constatns C1 and C2 are independent of the choice of

,-(N) -(N) L
Since /( < N, we have

q q

* P(G ,-G > 0 for at least one lE (N < I C(q+)N.
-S-

-S

Bv Borel-Cantelli's lemma, with probability one for large N,

q q

which implies that

k D N+1

N j N'

Thus the theorem is proved.

; .-. .- % = . . . . .o -. -..v v ~ ' "- . *-*_-.S-. .- .. ,., ,, fM'; rz';, ,- ,
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4. ESTIMATES OF THE NUMBER AND LOCATIONS OF
CHANGE POINTS WHEN q IS UNKNOWN

When the number of the change points is unknown, we have to estimate q.

(N) (N) (N)For this purpose, some notations are introduced. Suppose that y (k 1 k

is an integer partition of [0,N]. Set

K {(kN) .. ,(N) 0 _ L 0 k(N) (N)(S 1 , k f... < k e N. (4.1)

where e - L and L is a constant. ir N), k.N ) will be written as r,,k respectively belo
t i i

Let the sequences CN and DN satisfy the following conditions:

SCN  DN  DN
Lim - = - lim - = lim - 0. (4.2)
N- logN N CN ' NN-' N

Set

H log tA (N)I- CN. (4.3

-(N) -k(N) .. '(N)Assume T = (N ' (N) ) K is a partition of maximizing H when

runs over all integers of (0,LJ, i.e.,

H(k(N),.., ) = max H (N). (4.4)h" i(WK IT

(N) E(N)
Then, k 1 . (N ) are grouped into some groups by the following procedure:

Let k(N) belong to the first group, say M(N) . If ;N) _(-N) DN kN )also12 1 N
(N) o(N) M(N)belongs to M, otherwise is called an element of the second group MN

In general, assume i(N) E M.. Then

S(N) -(N) -(N)
i(N) Mi if - k < DN

S(N) (4.5)
Mi+ , otherwise.

Based on this procedure, we get groups M(N),...,M (N ) finally. Let
i(N) (N) q h
k. be an element of M ,j 1,2,...,jN Then we have the following theorem:
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Theorem 4.1. Under h , we have
0

N - q, a.s. (4.6)

-(N) ~ N

N N (t tq) as (47)

' -(N) (N)Proof. In order to simplify notation, we write k. for k ri for iN, etc.
j f 7

If the hypothesis h is true, then there exists a partition o = (k ... ,k q

so that (3.1) holds. From (3.11), for some C > 0,

P{Gn G n CLlogN}<1-
,R'6 K, n-4 n 0o

Then, with probability one for large N, we have for any £ < L and r - (jl ... 'j) n.

H,-H O -G -H GC + qC = 0(logN) - (Z-q)C
If 11 0 7 Ile n N N N

C < 0. (4.8)2 N

This fact shows that the maximum of H cannot. reach at refinement parti-
134 4

tions of no. Next, set RN = DNCN. It follows that

N--- li & -N 0,Nlim = 0, and 0. (4.9)
D D~cRNN' DC (N- N N-N NN

Define

K (N) , (k, .... k')EK:.3j < q such that Ik'-k I >  R for i . ,
I N

Then, following the same lines of obtaining (3.12), we have,

with probability one for large N,

P(;" G - C2 % <0 (4.10)
wm, 0

ite
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and with probability one for large N, we have for any 1C= (k'

H, - H G , - G -(Z-q)CN < _ -- R N + It-qC < C2 RN < 0. (4.11)

This inequality also shows that the maximum of H cannot reach at Tr' above.

In other words, if ; = (kl .. kQ is a partition of these maximizing H , r E K, then

at least one cut-point of i falls into each R N-neighbor of k., I < j < q,

with probability one. for large N. HeRce, based on our procedure of grouping

kit .... k , it is hnown that, with probability one for large N,

'N > q. (4.12)

Further, we prove that all cut-points of IT = kl .... k ) must drop into
q D DNU (k j - 2 . k + N-). with probability one for large N.

First, suppose iT= (k, .... satisfies the following condition:

ITl GK - R(N), IT T and for some i <

(w)

q
k' E U (km-RN,km+RN), b 1,2,... i-1,i+l ..
b m=l

and

q
k'q U (k -R /2,k +R /2).
i m= Im N m

Write 7 i (k ..... k)..It is obvious that TT I" Since

I --

A - A - (k'- k' " , x )(x , )'
1- 1i -ki+l - -i -i i+l

++LWik'( x)(x - ) _> 0 (4.13)N i+1 I ki-kl - k

(k' ~ 1 ~k1 k1 + 1 ~ ' 1!~ ' I 0 (.13

Assume that k' < k < k' < ' < k (see figure 1)kFor other permutations of

k. ,' k' ,k' ,kjl and k., the treatment is similar.)

D - N / 2/--N / N/2 . RN

k' Kk k' k

Figure 1

*d. *.1' .- Jr
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Set
k -k_a = k-. ' 8 = 1 - a.
ki i-i .

Making routine calculation and noticing (2.14), we can change (4.13) into the

form.
(k!-k!_ )(k! -k )

A,, -A N kl ) .(ax. +fxk

-l_ k- -
2(k! -k' )k-k!) "'-1 i-I i+l1 2( jSNi+i-i --1 - -+ -J

16(k-k' )(k' -k')
1i- i+l ki 2

N(ki~-k' ) [(Xk'. -j-)(k ' k U
-1 i-i-I j-I1 j- .

- j- ) k - + (kk)k' -Uj)(k'k' - )' "

1 -- k1-k i+l i P

But by Lemma 4.3, we get uniformly for all those i satisfying i'),

-k(C (( =I )(xoR ____max! _2) N' k j(-1 aks. (4.1

and2

(k k -k ) (10kk'

( -' )(k' k'i ki-I i+ i

+mx~ 1 ( (k - '- ) k[r l-iI ) (4.14)

11 i

(D'-I.)-DBut b- iem 4.3, we get uniformly for all those r sasi(

max 1 (2& o( a.s. (4.17)

max(I) = O(-) = o(--),and (

0" " - + " -,-%-, - 1 ) 4. 16)
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max (A _I-A - m ( ) +  max(2) - o( N), a.s. (4.18)

From this inequality and Remark 2.2, with probability one for large N, we have for

all those i satisfying (*),

H H (logA, -logjA J) - (E-1)C + c
1T I T 2 -i IT N N

H _1

o(CN) + CN C > 0 (4.19)

-(N)
Next, set 7' c K - K Assume that r' 4 r and there exist more than

one cut-points of r' in the

q D D
NN

complementary set of U (k - --, k.+-i). Write
j=1 J -

( ,. .. k', k'+ ... k! ,k )
i i+l i+,+ "

and suppose that there exists a cut-point, k. say, of 1r such that] 0

DN  DN
k. E(k j-- kj i+ )j-1 2'j-i

DN  DNk' E(k. --, k + )i+ u+ l 2 -2

and
DN  DN

k . k' [kj_l+ ]+1i+ k - -

D DN
DN < N

k k' k' k' k' k' k. k'
j-1 i ki+I i+2 i+w-1 i+w ji +l

Figure 2

Let

i - (k{i .. ,k'',,+ 1 k . , k,k' ,ke m = 0,1..,~~~~~~ - r 1 .. iil.. +ar+ i...

-+ % .% % -. ,- % -. - , ,, . • '% = ,,- - % ' "." %, "."'" , - ' ' ',"
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_ (k k!... .k ' ki! 1 ,. ... ks).

From (4.18), we get uniformly for all those ir' and i- _mabove,
C N

.x(A - A _ = o(-N), a.s.

Following the same lines as obtaining (4.15), we have uniformly for all those

above, CN
A (A, ) = o(-), a.s.

max i Ijax _w+2. l

Again notice that Ex' 
= j, r = i + 1,... ,i + w, hence by Lemma 2.3 we have

uniformily for n, and i

W-1a--

A mx(A IT-WA I ) Amx(A i W+_ T u~
CN loN CN

So(-) + (w-2) 0(NR N ) = o(-), a.s.
< 0-

From this fact and the Remark 2.2 of Lemma 2.3, it.is proved that with probab~litv

one for large N, we have for all those 7' above, there exists i _i such that

H _, - H - (logIA I-_gI J) - (Z& h)CN +ZCN

C.. ) > 0 . ( 4 .2 0 )=o(CN) +hCN 2 N

The inequalities (4.19) and (4.20) show that the maximum of H , EK

can nit reach at partitions for which there exists one cut-point at least droping
q DN  DN

out of U (kj- 2N, k + -2 ). According to our procedure of grouping kl ..

with probability one for large N, no two or more groups exist in each

D- -neighbor of k. Hence

N <  q  a.s. (4.21)

Combining (4.12) and (4.21) we have, with probability one for large N,

% 'N - q.

;1 . . .. , ... , . ., ,. : .,: < : , :, > ' '.,', : : > ¢ :":f , ' :"? ';":" ' " , '; -. , -
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It is easy to see that

k.
-i t. a.s.

N

From that lrn - 0. Thus the theorem is proved.
N N

-F F
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5. TESTS OF HYPOTHESES FOR DETECTION OF CHANGE POINTS

First, we assume that Z is known and the number of change points is

unknown. Let H.: Wi =  for i = 1, 2,..., N-I. Then we can test (see

Krishnaiah (1969)) the hypotheses H1 .... . HN-1 simultaneously as follows. Let

Xi2 = Xi-Xi~ ) 2Z)- (Xxi- i l

for i 1,2,... ,(N-l). Then, we accept or reject H. according as
1

"X i > c X
1> a

where

2 cN-I
P < c n Hi = (1-a).i=1

2 2The joint distribution of X1 9 ... XN-I is a multivariate chi-square distribution.

Tables for approximate percentage points of c are given in Krishnaiah (1980).
2

If Z is unknown but an independent estimate (S/y) of E is available, we use T1

2instead of Xi as test statistics where

1 -

T = (Xi- i+l)'(S/ ) ) ( i i+l

We can determine the number of change points and estimate the locations of
N-I

change points by the above method. Here, we note that n H. indicates that
i=1 1

U N and no change points exist. If H i l ... 1HN-1 are all simultaneously

rejected, then we have (N-l) change points. If q of the hypothesis Hi1,....

i
N-1) are rejected, then there are q change points. Suppose n H. is accepted

j=l 
J

and H i+ is rejected, a change point occurs at t.. Suppose q is known, then

are change points where they are chosen as follows:
1 q

- •. -.... .* -. [: - " °'
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2 2 2,, 'xl max {x I  .... PXN - 1 }

2 = 2 i=l .. N-I; i
Xk. maxjX., 012 2

x = maxixi; i=l,...,N-1; i #iklk2}

X2  max{Xi; i2,....N-I; i # k k

q 
q

We can use finite intersection tests proposed by Krishnaiah (1965) for

multiple comparisons of mean vectors also to estimate the locations of change

points.
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